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Ac.Q.(LA r

KNOWLEDGE AND UNCERTAINTY

Henry E. Kyburg, Jr.

One purpose -- quite a few thinkers would say the main purpose-- of %v*11abilit 0
seeking knowledge about the world is to enhance our ability to make good . 7wailand
decisions. An item of knowledge that can make no conceivable difference Atplo and

with regard to anything we might do would strike many as frivolous.

Whether or not we want to be philosophical pragmatists in this strong
sense with regard to everything we might want to enquire about, it seems a
perfectly appropriate attitude to adopt toward artificial knowledge -

systems.

If it is granted that we are ultimately concerned with decisions,
then some constraints are imposed on our measures of uncertainty at the

level of decision making. If our measure of uncertainty is real valued, 4
then it isn't hard to show that it must satisfy the classical probability
axioms. For example, if an act has a real-valued utility U(E) if event E
obtains, and the same real-valued utility if the denial ofE obtains,
(U(E) - U(-E)) then the expected utility of that act must be U(E), and
that must be the same as p*U(E) + )q*U(-E), where k and represent the
uncertainty of E and -E respectively. But then we must have £ + _ q .

1. There are reasons for rejecting real-valued -- i.e., strictly
probabilistic -- measures of uncertainty, though not all the reasons that
have been adduced for doing so are cogent. One is that these
probabilities seem to embody more knowledge than they should: for
example, if your beliefs are probabilistic, and you assign a probability
of .01 to a drawn ball's being purple (on no evidence), and a probability
of .02 to a second ball's being purple on the evidence that the first one
is, and regard pairs of balls as "exchangeable", then you should be 99%
sure that in the infinitely long run, no more than 11% of the balls will
be purple. You know beyond a shadow of a doubt (with probability .99996)
that no more than half will be purple. (In fact, we need much less than
full exchangeability for this: all we need is that both individual events
and pairs of events are treated the same way -- Kyburg, 1968.)

Peter Cheeseman (1985) has given a defense of classical probability,
and perhaps would not find even such results as the foregoing distasteful.
But it is hard to see how to defend the real-valued point of view from
charges of subjectivity. Cheeseman refers to an "ideal" observer, but
offers us no guidance in how to approach ideality, nor any
characterization of how the ideal observer differs from the rest of us.
It is therefore quite unclear what the ideal observer offers us, other
than moral support: each of us is no doubt convinced that the ideal
observer assigns probabilities just like himself. One man's subjective
bias is another man's rational insight.

One defense against charges of subjectivity is to be found in the
"convergence" theorems, of which the most famous is de Finetti's (de
Finetti, 1937). Roughly: If S is a sequence of trials, each resulting in
success or failure, and you and I agree that the sequence is exchangeable,
then no matter how divergent our initial views of the probability of
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success -- so long as they are not given by probabilities of 0 or 1 -- and
no matter what degree of agreement we seek, there is a number n such that
after observing n trials you and I will agree to that degree on the
probability of success on the next trial.

Of course each such theorem has a less gratifying counterpart: given
any degree of disagreement that is intolerable, and given any a, there
exists a degree of initial disagreement such that even after n trials our
degree of disagreement about the probability of success on the n plus
first trial will be intolerable. And nothing precludes our disagreeing
that much to start with.

It could be argued -- and has been -- that subjective probabilities
don't vary so drcadfully much, and so in fact subjectivity is a mere
hobgoblin. It may be philosophically troubling to those of that turn of
mind, but it is of little practical importance.

But I think it can be argued that a small difference in some
subjective probabilities can lead to a very large difference in others.
Furthermore, it is well known that we all fail to conform to the
probability calculus in our degrees of belief. That just means that we
have to make some adjustments. Since small differences can lead to large
ones, the particular adjustments we make can have large consequences.

There are other ways of representing uncertainty than by real numbers
between 0 and I. if these uncertainties are to be used in making
decisions, however, they must be compatible with classical point-valued
probabilities. My preference is for intervals, because they can be based
on objective knowledge of distributions, and because this compatibility is
demonstrable. (Kyburg, 1974)

In what follows, I will sketch the properties of interval-valued
epistemic probability, and exhibit a structure for knowledge
representation that allows for both uncertain inference from evidence and
uncertain knowledge as a basis for decision. Along the way I make some
comparisons to other approaches.

2. Probability.

Probability is a function from statements and sets of statements to
closed subintervals of 0,1 . The sets of statements represent
hypothetical bodies of knowledge. The idea behind Prob(S,K) - p,q is
that someone whose body of knowledge is K should, ought to, have a
'degree' of belief in S characterized by the interval p,q . The cash
value of having such a'degree' of belief is that he should not sell a
ticket that returns to the purchaser $1.00 for less than 100 cents, and
he should not buy such a ticket for more than 100_ cents. The relation in
question is construed as a purely objective, logical relation.

Every probability can be based on knowledge of statistical
distributions or relative frequencies, since statements known to have the
same truth value receive the same probability, and every such equivalence
class of statements (we can show) contains some statements of the
appropriate form. This statistical knowledge may be both uncertain and
approximate (we may be practically sure that between 30% and 40Z of the
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balls are black), but it is objective in the sense that any two people

having the same evidence should have the same knowledge.

Classical point-valued probabilities constitute a special case,
corresponding to the extreme hypothetical (and unrealistic) case in which
K embodies exact statistical knowledge.

The connection between statements and frequencies is given by a set
of formal procedures for finding the right reference class for a given
statement. The reference set may be multi-dimensional -- the set of urns,
each paired with the set of draws made from it. It may be only
"accidentally" related to sentence -- as when we predict the act of
someone who makes a choice on the basis of a coin toss. What is the right
reference class for a given statement S depends (formally and objectively)
on what is in K, our body of knowledge. In some cases we can implement a
procedure for finding the right reference class.

It is natural to suppose that statistical knowledge in K is
represented by the attribution to each reference set of a convex set of
distributions -- for example we have every reason in the world to suppose
that heads among coin-tosses in general is nearly binomial, with a
parameter close to a half. (We have no reason to suppose that the
parameter has the real value .49999...). Or we may have good reason to
believe that two quantities are uncorrelated in their joint distribution.
Or that we can rule out certain classes of extreme distributions. We can
know of a certain bent coin that heads will be binomially distributed in
sequences of its tosses, with a parameter 2 at least equal to a half. In
a wide range of cases of practical importance, what we can know of the set
of distributions is that conditional independence obtains between certain
variables. (Judea Pearl has made conditional independence the cornerstone
of his constraint propagation approach (Pearl, 1985); conditional
independence is what is required to warrant the use of Dempster's rule of
combination.

Henceforth, we assume convexity. Here are some immediate results
(Kyburg 1961, 1974):

(1) If Prob(S,K) - p,q then Prob(-S,K) 1 1-g,l-p

(2) If (S & T) is in K, and Prob(S,K) m pl,gl and Prob(T,K) - p2,q2
and Prob(T S) - p,q , then there are numbers in pl,ql and p2,q2
whose sum is in p,q . To see that p,q can be a proper subset of
pl + p2,ql + q2 , consider a die that you know to be biassed toward the

one at the expense of the two, or toward the two at the expense of the
one. Reasonable probability for the disjunction, "one or two" would be
very close to 1/3, even though the reasonable probabilities for "one" and
"two" would be significantly spread above and below 1/6.

(3) We can show that: given any finite set of sentences, Si, and a body

of knowledge K, there exists a Bayesian function B, satisfying the
classical probability axioms, such that for every sentence S in Si,
B(S) Prob(S, K).

(4) Let iE be the body of knowledge obtained from K when evidence E is
added to 1L If E is among the finite set of sentences in question, then
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there may be no Bayesian function B satisfying both B(S) Prob(S,K) and

B(S/E) Prob(S,KE): classical conditionalization is not the only way of

updating probabilities.

(5) The randomness relation is definable, and in fact for one kind of

database rules for picking the right reference class have been

implemented.

3. Uncertain Knowledge.

One problem that Bayesian and other approaches to uncertainty have is
that there is no formal way of representing the acquisition of knowledge.
We can represent the having of knowledge (by the assignment of probability
1 to the item), but since there is no way in which P(S/E) can be 1 unless
P(S) is already one, conditionalization doesn't get us knowledge. This
has been noticed, of course; Cheeseman (1985, p. 1008) simply says, "A
reasonable compromise is to treat propositions whose probability is close
to 0 or 1 as if they are known with certainty..." But of course it is
well known that this cannot be done generally: the conjunction of a
number of certainties is a certainty, but the conjunction of a large enough
number of certainties in Cheeseman's sense is what he would have to
consider an impossibility*

McCarthy and Hayes (1969) are seduced into following this primrose

path, when they suggest (p. 489) "If 01,02,...,On 0 is a possible
deduction, then probably(0l),...,probably(On) probably (0) is also a
possible deduction." This is clearly ruled out, on our scheme -- and even
acceptable(0l),...,acceptable(02) acceptable(0) is ruled out as a
consequent of the logical conditional. If we are to formalize uncertain
inference at all and not merely the deductive propagation of
probabilities, we must somehow accommodate sets of conflicting statements.
Purely probabilistic rules of inference do this easily.

We can accommodate Cheeseman's intuition that we should accept what

is "practically certain" by considering two sets of sentences in the
representation of knowledge. One of them we will call the evidential
corpus, and denote by Ke; the other we will call the practical corpus, and
denote by Kp.

We will accept a sentence into Kp if and only if its lower
probability relative to Ke is greater than p. The conjunction of two
statements that appear in E2 will also appear in Kp only if the
conjunction itself is probable enough relative to Ke. Thus EE will not be
deductively closed, though we can prove that if a statement S appears in
Ep, and S entails T, T may also appear there because it will have a lower
probability greater than that of S. This reflects a natural feature of
human inference: we must have reason, not only to accept each premise in a
complex argument, but to accept the conjunction of the premises, in order
to be confident of the conclusion.

In fact, the uncertain inference that generates Ek from Ke has a
number of the desirable features of non-monotonic inference. Add "Tweety
is a bird" to Ke, and "Tweety is capable of flight" will appear in k
exactly because practically all birds fly. In addition, add "Tweety is an
ostrich" to Ke, and "Tweety is not capable of flight" will appear in p.
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In the former case, you should base your decisions on the assumption that

Tweety can fly; in the latter, you no longer need worry about that
possibility.

But to warrant the detachment that yields the addition of a sentence
to our stock of practical certainties, we need more than a mere
preponderance of evidence. We don't want to infer that two tosses of a
coin will yield one head and one tail just because this is the most likely
outcome. Similarly, we don't want to infer that a die will not yield a
six: we want to say that the probability of an outcome other than a six is
about five sixths.

This is just to say that the level of practical certainty p is
exactly what distinguishes (in a given context) sentences that we are
willing to bet against from sentences that we take for granted.

We have a picture that looks like this:

h**hr***

* *

* Ke *

Uncertain inference: S Ep iff
Prob(S,ke) p

* *

*Kp*

It is relative to EK, the practical corpus, that we make our
(practical) decisions. It is thus the (convex sets of) distributions --

including conditional distributions -- embodied in the practical corpus
that we use in our decision theory.

But there are questions. What is the value of R that we are taking
as practical certainty? How do statements get in Ke? What is the
decision theory that goes with this kind of structure?

Let us first consider the value of p. Suppose the widest range of
stakes we can come up with is 99:1. For example, Sam and Sally are going
to bet on some event, each has $100, and neither has any change. Then a
probability value falling outside the range of .01,.99 would be useless
as a betting guide. A probability less than .01 would (in this context)
amount to a practical impossibility; one greater than .99 would amount to
a practical certainty.

The range of stakes can determine the level of "practical certainty"
R. What counts as practical certainty depends on context, but in an
explicit way: it depends on what's at stake.

How do statements qualify as evidence in Ke? Not by being "certain."
It can be argued that anything that was really incorrigible would have to
be devoid of empirical content. (The worry about uncertain evidence is
not misplaced; it's just misconstrued.) One typical form of evidence
statement is this: "The length of x is d + r meters". Whatever our
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readings, these statements are not "certain' -- they admit of error. The
same is true of all ordinary observation statements.

So a statement gets into Ke by having a low probability of being in
error; equally, by having a high probability (at least e) of being
veridical. How high? In virtue of the fact that conjunctions of pairs of
statements in Ke appear in ER, it seems plausible to take e = ( )I/2. For
a number of technical reasons (Kyburg, 1984) it turns out to be best to
construe the corpus containing the theory of error as metalinguistic.
This is as one might think: after all, the theory of error concerns the
relation between readings -- e.g. numerals written in laboratory books --
and values: the real quantities characterizing things in the real world.
For present purposes we need note only that this is not the beginning of
an infinite regress. We can maintain objectivity; we can avoid
"presuppositions" and other unjustified assumptions.

4. Decision.

It has been objected (Seidenfeld, 1979) that there is no decision
theory that is tailored to Shafer's theory of evidential support. Indeed,
it is pretty clear that support functions alone would conflict with
expected utility. On the other hand, since Shafer's system of support
functions is a special case of the representation by convex sets of
distributions, we can have very nearly a normal decision theory using
Shafer's system. In computing the value of an act, we need to consider
not only the support assigned to various states of affairs (corresponding
to lower probabilities), but also the plausibilities -- corresponding to
the upper probabilities.)

This is true for the more general convex set representation: We can
construct an interval of expected utility for each act. A natural
reinterpretation of the principle of dominance would take an alternative
al to dominate an alternative a2 whenever, for every possible frequency
distribution, the expectation of al is greater than the expectation of a2.

This eliminates some alternatives, but in general there will be a
number of courses of action that are not eliminated. What we do here is
another matter, one which is certainly worthy of further study. But it
seems natural that minimax and minimax regret strategies are appropriate
candidates for consideration under some conditions. There may well be
others, such as satisficing. And it may even by that the guidance
provided by the motto: eliminate dominated alternatives, is as far as
rationality alone takes us. Further pruning may depend on constraints
that are local to the individual decision problems.
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